
LLNL-JRNL-669889

Fully-Implicit Orthogonal Reconstructed
Discontinuous Galerkin for Fluid
Dynamics with Phase Change

R. Nourgaliev, H. Luo, B. Weston, A. Anderson, S.
Schofield, T. Dunn, J. Delplanque

April 20, 2015

Journal of Computational Physics



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin Method for

Fluid Dynamics with Phase Change

R. Nourgaliev∗,a, H. Luob, B. Westonc, A. Andersona, S. Schofielda, T. Dunna, J.-P. Delplanquec

a Lawrence Livermore National Laboratory, Design Physics Division, Livermore, CA 94551, USA
b North Carolina State University, Mechanical & Aerospace Engineering, Raleigh, NC 27695-7910, USA

c University of California Davis, Mechanical & Aerospace Engineering, Davis, CA 95616, USA

Abstract

A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows

on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov

based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic

or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving

compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by

applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as well as robustness

and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of

the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight

coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better

conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.

Key words: Discontinuous Galerkin Method, High-Order Space-Time Discretization, Fully-Implicit Solvers, Newton-Krylov

Algorithm, Fluid Dynamics, Phase-Change

1. Introduction

In this work, we developed a new fully-implicit solution algorithm, based on the reconstructed Discontinuous

Galerkin (rDG) method. The main technical contribution is the combination of the in-cell and inter-cell reconstruc-

tions using orthogonal basis/test functions on unstructured meshes, which are aimed at better conditioning of linear

steps during the Newton-based non-linear iterative procedure in fully-implicit solver. In addition, we demonstrated an

ability to solve for primitive variables, chosen on the requirement of solvability (better conditioning) of the underlying

physics. This is in contrast to our previous rDG efforts [31–36, 38–40, 58–60], which used conservation variables as

a solution vector. In the context of the application of interest, we are looking for all-speed flow capabilities, with

phase change (melting/solidification). In these cases, the set of conservation variables (i.e., mass, momentum and

total energy) is poorly conditioned and restrictive in terms of feasible flow regimes (Mach number limitations). Thus,

we use the sets of primitive variables, which boost solvability, such as pressure, velocity and either specific internal

energy, enthalpy or temperature, as an energy transport variable. Note that residuals are always formed for mass,

momentum and energy, to ensure conservation upon convergence of the non-linear solver, within the framework of

the Newton-Krylov algorithm.

This work is motivated by applications in Additive Manufacturing (AM). AM requires the resolution of laser-

induced powder melting and the subsequent formation of liquid metal pools, with numerous computationally chal-

lenging issues [26]. These include modeling of liquid-solid interfaces, due to powder melting/solidification; gas-solid

and gas-liquid multi-material interfaces, with representation of ambient gaseous media (air, Argon, Helium), using
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fully-compressible formulation; and complex interfacial physics, including surface tension and Marangoni convec-

tion, adequate representation of fluid-solid-gas contacts, wetting phenomena, and metal evaporation/condensation,

with associated recoil pressure effects, etc. In this study, we will focus on all-speed flow capabilities and adequate

modeling of fluid-solid phase change.

To enable the numerical resolution of all-speed flow regimes, and stiffness associated with material strength mod-

els, covering both liquid (Newtonian fluid viscous stress tensors) and solids (with appropriate stress deviators, plastic

strain and other constitutive models), we decided to work with fully-implicit solvers, which are based on tight cou-

pling of all involved physics. While we are interested in resolving slow dynamic time scales of the process (mostly

at the material velocity time scale), fast (stiff) time scales due to acoustics and material strength are also properly

accounted for.

We capitalize on recent developments in L-stable time integrators [7, 8] and Newton based multiphysics algorithms

[27, 48], which is in contrast to Picard-iteration based fully-implicit solution algorithms1 [47, 49], currently widely

used in commercial fluid dynamics codes, such as ANSYS-CFX, STAR-CCM+, Fluent, etc., and many research and

open-source codes, such as OpenFOAM.

For space discretization, we will use the recently developed reconstructed Discontinuous Galerkin method, which

has been been shown to be a highly attractive approach for high-order numerical discretization of multi-physics prob-

lems [31–36, 38–40, 44, 59, 60]. Our emphasis here is placed on making rDG work robustly within the fully-implicit

framework, especially at the regimes when the underlying linear algebra is highly stiff. For this purpose, we adopt

orthogonal basis functions, which support better conditioning of the time integrators. To ensure orthogonality, we use

the modal DG with Legendre-based tensor-product basis functions, similar to what was used in recovery DG on two-

dimensional uniform meshes in [45, 46]2. In addition, we modify the test functions, by inverse-Jacobian-weighting

the basis functions, which places the method within the general class of Petrov-Galerkin formulations. This choice

of basis and test functions results in diagonal mass matrices. This new rDG method has numerous attractive features.

Besides orthogonality, the method is hierarchical, which enables natural compatibility with p-refinement and pro-

vides means for computing measures to activate h-refinement. The method inherits all advantages from the original

rDG, including an easy implementation on hybrid meshes and an ability to work naturally with AMR. Since the base

(zeroth-order) degrees of freedom are cell-averaged quantities, the method should be viewed as a DG-based extension

of the second-order finite-volume (FV) algorithm, to enable high-order (> 2nd) discretization on unstructured hybrid

meshes, without extension of the stencil. In fact, the stencil of the rDG is exactly the same as in the second-order

finite-volume methods, which are used in most commercial CFD packages. Close relationship with FV is very attrac-

tive for CFD practitioners, as most successful CFD codes are based on the FV framework.

The method is implemented and tested within LLNL’s ALE3D code [1, 2]. ALE3D is a multi-physics numerical

simulation tool, focusing on modeling hydrodynamics and structured mechanics in all-speed multi-material applica-

tions. Additional ALE3D features include heat conduction, chemical kinetics and species diffusion, incompressible

flow, a wide range of material models, chemistry models, multi-phase flow, and magneto-hydrodynamics for long-

(implicit) and short- (explicit) time-scale applications.

The rest of this paper is organized as follows. In Section 2, we start with the description of governing equations.

The new rDG with orthogonal basis/test functions is introduced in Section 3. Fully-implicit time discretization and

related algorithms (Newton-Krylov solver, solving in primitive variables, preconditioning) are described in Section

4. Extensive numerical testing and demonstration of the method’s performance are presented in Section 5. Finally,

concluding remarks and future directions are given in Section 6.

1We are excluding from consideration operator-splitting methods, such as projection methods [6, 9, 19]; and “Implicit Continuous-fluid Eulerian

(ICE)” algorithm, [21, 22]). These methods are very successful in simulations of relatively simple fluid dynamics, but are not considered to be

robust-enough for application of interest in the present study.
2It is instructive to note that similar basis functions are also used by Dumbser et al. [14, 15, 17], in conjunction with their Pn Pm scheme and

explicit time integrators.
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2. Mathematical Model

The governing equations can be written in the following form:

∂U

∂t
+

∂

∂x
j

(

F
j
− D

j

)

= S
j=1,2,3

(1)

where t, x = x
j
= (x, y, z), U, F

j
, D

j
and S are time, Cartesian coordinates, the vectors of conservative variables,

hyperbolic fluxes, diffusion fluxes and sources, correspondingly. We also introduce a vector of “primitive” variables,

W, which is generally different from U, and chosen based on the “better system conditioning” considerations, Section

4.1.4.

For the compressible Navier-Stokes equations, the conservation variables are mass, linear momentum and total

energy,

U =
[

ρ, ρu, ρv, ρw, E
]T

(2)

while the vectors of fluxes and sources are defined as:

F
j
=





ρv
j

ρv
j
u + Pδ

1 j

ρv
j
v + Pδ

2 j

ρv
j
w + Pδ

3 j

ρv
j
e + v

j
P





, D
j
=





0

τ
1 j

τ
2 j

τ
3 j

−q
j
+ v

k
τ

jk





, S =





m′′′

f
1

f
2

f
3

q′′′ + f
k
v

k





(3)

In eqs.(2) and (3), ρ, v = v
j
= (u, v,w), e, and P are the density, material velocity, specific total energy, and

pressure, correspondingly. Volumetric mass sources, body forces, and volumetric energy sources are denoted as m′′′,

f = f
j
and q′′′, respectively.

2.1. Constitutive physics

Without loss of generality, we will consider here Newtonian fluids, for which the viscous stress tensor is defined

as [3, 28]

τ
i j
= 2µS

i j
+

(

ς −
2

3
µ

)

︸    ︷︷    ︸

λ

∂
k
v

k
δ

i j
(4)

where µ and λ are the first and second Lamé parameters, respectively, while ς is the bulk viscosity. The strain tensor

is defined as

S
i j
=

1

2

(

∂v
i

∂x
j

+
∂v

j

∂x
i

)

(5)

Following Stokes [3], λ = − 2
3
µ and ς = 0.

For heat flux, we will use Fourier law, defined as

q
j
= −κ

∂T

∂x
j

(6)

where κ is the thermal conductivity coefficient, which is in general a function of temperature T .

The final constitutive relationship is due to equations of state, defining

ρ = ρ (P, u) and u = u (P, T ) (7)

where u is the specific internal energy. The equation of state used in this study is described in Appendix A. Here, we

will restrict ourselves to thermally perfect materials3, i.e. u (T ).

3It is important to note that our framework is not limited to equations of state in analytic form. In practical applications, more accurate represen-
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Figure 1: On thermal model with melting/solidification.

2.2. Phase change

To represent phase change, we use an energy- (homogeneous thermal equilibrium)- based approach. Phase transi-

tion is incorporated into the thermal model u (T ) as following.

Three material state zones are introduced, Figure 1.

I. Solid.
(

T < T
S
, u < u

S

)

, where T
S

and u
S

are solidus temperature and specific internal energy, respectively.

II. Liquid.
(

T > T
L
, u > u

L

)

, where T
L

and u
L

are liquidus temperature and specific internal energy, respectively.

III. Two-phase.
(

T
S
≤ T ≤ T

L
, u

S
≤ u ≤ u

L

)

.

As the materials of practical interests for AM are alloys, we always have a transitional two-phase region, between

solidus and liquidus, making the mapping (u←→ T ) non-singular. This enables a robust melting front capturing,

with finite-thickness jumps in specific energy due to latent heat, and eliminates numerical degeneracy/oscillations

when computing heat transfer across the two-phase zone.

We define the latent heat as

u
f
= u

L
− u

S
(8)

Thermal conductivity is represented as

κ (u) =






κ
S

(T ) if u < u
S

κ
L

(

T
L

)

+
κ

S (T
S )−κL (T

L )
2

(1 + cos (xπ)) if u
S
≤ u ≤ u

L

κ
L

(T ) otherwise

(9)

tation is typically provided by tabulated EOSs. For instance, in [43, 61], we utilized bi-cubic spline thermodynamically-consistent representation

of IAPWS-IF97 tables for water-steam systems, using a similar rDG-based Newton-Krylov framework, in applications for nuclear reactor safety.
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where κ
L

(T ), and κ
S

(T ) are the thermal conductivity of liquid and solid, respectively, while the thermodynamic quality

is defined as

x =
u − u

S

u
f

(10)

To represent the strength of the material, in both solid state and the transitional two-phase “mushy” region, we

utilize the viscosity-based approach4. It is a simple extension of the viscous stress tensor in a fluid, eq.(4), where the

viscosity is set to be a function of the specific internal energy (or temperature). We use the following functional form

for the dynamic viscosity:

µ (T ) =






µ⋆
S

if T < T
⋆

µ
L

f
µ

(T ) if T
⋆

≤ T ≤ T
L

µ
L

otherwise

(11)

where f
µ

(T ) is the viscosity factor, smoothly varied from 1 to a large number,
µ⋆

S

µ
L

, in the range of temperatures from

liquidus T
L

down to T
⋆

. This model enables a smooth transition of the effective viscosity of the media from the

dynamic viscosity of liquid (µ
L
) to the very large “solid-state” viscosity (µ⋆

S
), which inhibits material deformation.

The viscosity factor model used here is described in Appendix B.

3. Reconstructed Discontinuous Galerkin (rDG)

The computational domain Ω is subdivided into a collection of non-overlapping elements, Ω
e
. Without loss of

generality, we will consider here linear QUAD4 (4-node) and HEX8 (8-node) elements5.

Next, let us introduce the following broken Sobolev space V
p

h
, consisting of discontinuous vector-values polyno-

mial functions of degree p,

V
p

h
=

{

υ
h
∈

[

L
2

(Ω)
]m

: υ
h

∣
∣
∣
Ωe

∈
[

V
m

p

]

∀Ω
e
∈ Ω

}

(12)

where m is the dimension of the unknown vector andV
p

is the space of all polynomials of degree ≤ p. To formulate

the basic DG method, we introduce the following weak formulation, which is obtained by multiplying eq.(1) by a test

function W
h
, integrating over an element Ω

e
, and then performing an integration by parts,

R
h

(

U
h

)

= ∂
∂t

∫

Ωe

U
h
W

h
dΩ +

∫

Γe

(

F
j

(

U
h

)

− D
j

(

U
h

))

n
j
W

h
dΓ −

−
∫

Ωe

[(

F
j

(

U
h

)

− D
j

(

U
h

)) ∂W
h

∂x
j

+ S
(

U
h

)

W
h

]

dΩ, ∀W
h
∈ V

p

h

(13)

where U
h

and W
h

are represented by piecewise-polynomial functions of degrees p, which are discontinuous between

the cell interfaces, and n = n
j

denotes the unit outward normal vector to the element face Γ
e

(i.e., the boundary of

Ω
e
). The local residual function R

h

(

U
h

)

defines an inner product of the solution residue representation (with a chosen

set of basis functions) and the test functions W
h
. In our solution procedure, we are minimizing this inner product,

making this approach a particular case of the more general class of the method of Mean Weighted Residuals (MWR).

Since the numerical solution U
h

is discontinuous across element interfaces, the numerical hyperbolic fluxes are

not uniquely defined. The hyperbolic flux function F
j

(
U

h

)
n

j
appearing in the face integral term of eq.(13) is replaced

4Another commonly-used approach is due to Voller and Prakash [57], and it is based on the adaptation of the Darcy law. Pros and cons of these

models are discussed by Dantzig in [11]. Here, we chose to use the viscosity-based approach, as it is more numerically challenging, incorporating

the non-linearity and the momentum-energy equation coupling into the diffusion operator, which highlights the overall robustness of our numerical

solver.
5Extensions to quadratic QUAD8 and HEX20 elements, as well as to triangle and tetrahedral elements are straightforward.
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Figure 2: Element topology and isoparametric mapping for linear QUAD4 (top) and HEX8 (bottom) elements.

by a numerical Riemann flux function, H
j

(

U
L

h
,U

R

h

)

n
j
, which is computed by some (approximate) Riemann solver.

Here, U
L

h
and U

R

h
are the conservative state vectors at the left and right side of the element boundary. In this sense, the

discontinuous Galerkin formulation is very similar to finite-volume schemes, and the DG methods can be regarded as

a natural generalization of finite-volume methods to higher order.

3.1. Basis and test functions

Numerical polynomial solutions U
h

in each element are expressed using a chosen set of basis functionsB
(k)

(x), as

U
h

(x, t) =

K−1∑

k=0

U
(k)e

(t)B
(k)

(x) (14)

where U
(k)e

denotes degrees of freedom (DoF) in an element e. In our previous work, [31–36, 38–40, 59, 60], we

utilized the Taylor-series-based basis functions. In 2D, these are

T (x) =






1,
x − xc

∆x
︸ ︷︷ ︸

T
(1)

,
y − yc

∆y
︸ ︷︷ ︸

T
(2)

,
T 2

(1)

2
−

1

Ωe

∫

Ωe

T 2
(1)

2
dΩ

︸                     ︷︷                     ︸

T
(3)

,

T
(1)
T

(2)
−

1

Ω
e

∫

Ωe

T
(1)
T

(2)
dΩ

︸                             ︷︷                             ︸

T
(4)

,
T 2

(2)

2
−

1

Ω
e

∫

Ωe

T 2
(2)

2
dΩ

︸                     ︷︷                     ︸

T
(5)

, . . .






(15)

where ∆x =
xmax−x

min

2
, ∆y =

ymax−y
min

2
, and x

max
, x

min
, y

max
, and y

min
are the maximum and minimum coordinates in the

cell Ω
e

in the x-, and y-directions, respectively.
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Here, instead, we use tensor-product Legendre-polynomial-based basis functions, defined as

B (ξ, η) =






1, L
(1)

(ξ)
︸ ︷︷ ︸

B
(1)

, L
(1)

(η)
︸ ︷︷ ︸

B
(2)

, L
(2)

(ξ)
︸ ︷︷ ︸

B
(3)

, L
(1)

(ξ)L
(1)

(η)
︸           ︷︷           ︸

B
(4)

, L
(2)

(η)
︸ ︷︷ ︸

B
(5)

,

L
(3)

(ξ)
︸ ︷︷ ︸

B
(6)

, L
(2)

(ξ)L
(1)

(η)
︸           ︷︷           ︸

B
(7)

, L
(1)

(ξ)L
(2)

(η)
︸           ︷︷           ︸

B
(8)

, L
(3)

(η)
︸ ︷︷ ︸

B
(9)

, . . .






(16)

in 2D, and

B (ξ, η, ζ) =






1, L
(1)

(ξ)
︸ ︷︷ ︸

B
(1)

, L
(1)

(η)
︸ ︷︷ ︸

B
(2)

, L
(1)

(ζ)
︸ ︷︷ ︸

B
(3)

, L
(2)

(ξ)
︸ ︷︷ ︸

B
(4)

, L
(2)

(η)
︸ ︷︷ ︸

B
(5)

, L
(2)

(ζ)
︸ ︷︷ ︸

B
(6)

,

L
(1)

(ξ)L
(1)

(η)
︸          ︷︷          ︸

B
(7)

, L
(1)

(ξ)L
(1)

(ζ)
︸          ︷︷          ︸

B
(8)

, L
(1)

(η)L
(1)

(ζ)
︸          ︷︷          ︸

B
(9)

, . . .






(17)

in 3D. In eqs.(16) and (17), L
(n)

(x) are Legendre polynomials of order n, and we utilize the isoparametric mapping

from the physical space x = (x, y, z) to the reference space χ = (ξ, η, ζ) (Figure 2), using canonical shape functions

(see [29] for details). It is instructive to note that, with these basis functions, the first degree of freedom is the cell-

averaged quantity, which naturally connects this method to finite-volume methods. In addition, these basis functions

are modal and hierarchical.

The test functions are defined as6

W
(n)
=
B

(n)

|J|
(18)

where J is the Jacobian matrix, defined as

J =





x
ξ

x
η

x
ζ

y
ξ

y
η

y
ζ

z
ξ

z
η

z
ζ




and J

−1

=





ξ
x

ξ
y

ξ
z

η
x

η
y

η
z

ζ
x

ζ
y

ζ
z




(19)

(see [29] for details). Importantly, the basis functions eqs.(16) and (17) are orthogonal relative to the test functions

eq.(18). Thus,

∫

Ωe

B
(n)
W

(k)
dΩ =

1

A
(n)

δ
k,n

(20)

where the normalization coefficients are

A
(n)
=

{
1
4
, 3

4
, 3

4
, 5

4
, 9

4
, 5

4
, 7

4
, 15

4
, 15

4
, 7

4
, . . .

}

, (QUAD)

A
(n)
=

{
1
8
, 3

8
, 3

8
, 3

8
, 5

8
, 5

8
, 5

8
, 9

8
, 9

8
, 9

8
, 7

8
, 7

8
, 7

8
, 27

8
, 15

8
, 15

8
, 15

8
, 15

8
, 15

8
, 15

8
, . . .

}

, (HEX)

(21)

This is an important feature of this formulation, different from our previous work. Orthogonality is advantageous in

conjunction with fully-implicit time discretization, as the mass matrix is diagonal, with the maximum contribution

towards diagonal elements of the underlying linear algebra involved in linear steps of the Newton solver (see Section

4).

6Since the basis and test functions are different, this approach belongs to the more general class of the Petrov-Galerkin formulation.

7



3.2. Reconstruction

Discontinuous Galerkin methods provide an elegant way to build high-order space discretization on unstructured

meshes, by simply adding additional degrees of freedom per element, per variable. This approach is compact, i.e.

DG(Pp) of any order p has the same stencil, which is a very attractive feature in terms of parallelization and code

design. On the other hand, the size of the solution vector is growing significantly, as more equations for DoFs must

be solved for. In particular, for modal DG in 2D – the size of the solution vector for the second- DG(P1), the third-

DG(P2) and the fourth-order DG(P3) schemes are ×3, ×6 and ×10 times larger, respectively, as compared to the basic

DG(P0) finite-volume method. This is even worse in 3D, i.e. ×4, ×10 and ×20 – for the DG(P1), DG(P2) and DG(P3),

correspondingly. Such an increase in the size of the solution vector is unfavorable in the context of implicit solvers,

imposing significant memory requirements (for storage of the linear algebra matrices) and adversely affecting solution

scalability, as a majority of linear solvers do not scale linearly [53].

There is an alternative way to increase the order of accuracy, which is routine in finite-volume methods. All prac-

tically used FV methods reconstruct in-cell slopes of the solution vector by means of the solution reconstruction. This

leads to an increase of the stencil, which is a well-established, acceptable strategy for the second-order FV methods.

However, going beyond the second order is impractical for unstructured meshes, leading to significant complications

in the code design.

In [45, 46], we explored the ideas of recovery to enhance the order of accuracy for DG, without increasing the size

of the solution vector. We capitalized on the earlier work by van Leer and Nomura [56], who suggested to use recov-

ery in order to consistently discretize the diffusion operator within the DG framework. In [56], the DG’s piecewise

discontinuous representation of the solution at the element interfaces was replaced by a locally recovered underlying

smooth solution with sufficient fidelity, at the union of face-neighboring elements. During the recovery, it is required

that the solution be consistent with the underlying DG’s broken Sobolev space solution representation. We denote this

type of recovery as inter-cell recovery.

In [46], we utilized a similar strategy7 to enhance in-cell solution representation, by considering an element and

its neighbors. In 1D, this leads to a family of the rDG
Pn P

3n+2
schemes. Combined with inter-cell recovery, the rDG

Pn P
3n+2

offers a very useful discretization framework for modeling one-dimensional fluid flows in nuclear reactor safety sys-

tem analysis codes [61].

Extending the in-cell recovery to 2D regular meshes was explored in [45]. We demonstrated feasibility of the

sixth-order rDG
P

1
P

5
for the compressible Navier-Stokes equations and radiation hydrodynamics. However, using re-

covery on arbitrary meshes is impractical, as it requires involvement of vertex neighbors. A more fruitful approach

was explored by Dumbser et al. [14, 15, 17], who utilized in-cell least-squares recovery, to achieve higher order

representation with DG methods. The method is called P
n
P

m
– i.e., “solving for P

n
” and “reconstructing to P

m
” – a

convenient way to reflect what we attempt to achieve with in-cell recovery.

As we mentioned above, recovery is not a practical approach for increasing the order of the DG method on arbi-

trary unstructured meshes. In [33–40, 59, 60], we utilized the least-squares based reconstruction instead. In this

approach, we increased the accuracy of the DG method by one order, using only face-neighboring elements. This is

an important design requirement, necessary for feasibility of discretization on arbitrary (hybrid) unstructured meshes.

The distinguishable feature of this rDG
Pn P

n+1
method is the use of strong statements, rather than weak (integral) state-

ments of the recovery schemes. This strategy greatly simplifies the algorithm, and is along the lines of traditional

reconstruction with finite-volume methods. In fact, the rDG
P

0
P

1
is exactly what is known as the least-squares based

finite-volume method [5]. The rDG
Pn P

n+1
is designed to work with modal DG, capitalizing on the availability of the

solution derivatives at element centers. Thus, the in-cell higher order DoFs are reconstructed hierarchically, on the

top of the solved-for DoFs, with the requirement to be consistent with the cell-centered solutions (and all available

solved-for derivatives) in all face-neighboring elements, satisfied in the least-squares sense. It is easy to show that the

7It is instructive to note that similar recovery strategy was used by Qui and Shu [51], but in different context, building WENO limiters for DG.
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method is (n + 1)-consistent. The method is constructed in conjunction with the inter-cell reconstruction, which con-

siders all unions of face-neighboring elements, and imposes the integral consistency of the face-centered reconstructed

solution for cell-averaged quantities, and the least-squares-based strong statements for the solved-for cell-centered so-

lutions and all available derivatives. This combination of the in-cell and inter-cell reconstructions provides a flexible

discretization framework for generic PDEs of type eq.(1), which includes transient hyperbolic, parabolic or elliptic

operators. The implementation of solution limiting, necessary for shock dynamics and multi-material applications, is

done within the hierarchical WENO concept, as demonstrated in [39, 40, 60].

It must be noted that the reconstructed rDG
Pn P

n+1
suffers from the same non-orthogonality issue, as its base modal

DG – i.e., the mass matrix is non-diagonal. In the following sections, we describe the rDG
Pn P

n+1
based on orthogonal

basis functions (section 3.1), as well as other practical implementation issues, raised when building upon the Newton-

Krylov based fully-implicit solution strategy (Section 4).

3.2.1. In-cell reconstruction

The basic idea of the in-cell reconstruction is to build (reconstruct) additional degrees of freedom locally, at each

element, thereby increasing the order of accuracy without solving for corresponding PDEs. Consider for example

the rDG
P

2
P

3
, in two dimensions8. We solve for six degrees of freedom per variable (cell-average, 2 slopes and 3

curvatures), which represent the third-order-accurate piecewise-quadratic solution in the element. We want, however,

to enhance the solution locally to the fourth-order, representing the piecewise-cubic solution in an element as

U (ξ, η) = U
(0)
+ U

(1)
B

(1)
+ U

(2)
B

(2)
+ U

(3)
B

(3)
+ U

(4)
B

(4)
+ U

(5)
B

(5)
︸                                                                   ︷︷                                                                   ︸

Solved for

+

+U
(6)
B

(6)
+ U

(7)
B

(7)
+ U

(8)
B

(8)
+ U

(9)
B

(9)
︸                                              ︷︷                                              ︸

Reconstructed

+O
(

h4
)

(22)

where h denotes the mesh size. In this case, four degrees of freedom U
(6,7,8,9)

are reconstructed in each element, using

the following least-squares in-cell reconstruction procedure.

We seek for the missing DoFs, forming the following normal least-squares problem:




M
11A

M
12A

M
13A

M
14A

M
11B

M
12B

M
13B

M
14B

M
11C

M
12C

M
13C

M
14C

M
11D

M
12D

M
13D

M
14D

. . .

M
61A

M
62A

M
63A

M
64A

M
61B

M
62B

M
63B

M
64B

M
61C

M
62C

M
63C

M
64C

M
61D

M
62D

M
63D

M
64D





︸                                        ︷︷                                        ︸

M





U
(6)

U
(7)

U
(8)

U
(9)





=





R
1A

R
1B

R
1C

R
1D

. . .

R
6A

R
6B

R
6C

R
6D





︸   ︷︷   ︸

R

(23)

Each of these 24 equations represents a constraint, being enforced on the reconstructed solution polynomial, in

the least-squares sense.

Cell-centered constraints. The first four equations in the system (23) are formulated by requiring the in-cell solution,

eq.(22), to reconstruct the cell-centered (point-wise) solutions in the four9 face-neighboring cells A, B, C and D, when

extended beyond the cell E. The “extended” solution profile can be written as

U (x̄, ȳ) = L
(P3)

2TE





U
(0)

U
(1)

. . .
U

(9)





E





T
(0)

(x̄, ȳ)

T
(1)

(x̄, ȳ)

. . .
T

(9)
(x̄, ȳ)





(24)

8Extension to a generic rDG
Pn Pm

and three dimensions is straightforward.
9In the discussion, we are considering QUAD elements. Extension to TRIANGLE, HEX and TETRA elements is straightforward.
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where T
(n)

are the Taylor basis functions, eq.(15), while x̄ =
(

x − x
E

)

and ȳ =
(

y − y
E

)

. The matrix L
(P3)

2TE
executes

a mapping from DoF in our Legendre-based basis functions to those in Taylor basis functions (see Appendix C.1).

Thus, each of the first four equations in (23) can be formed by setting (x̄, ȳ) to
(

x̄
A
, ȳ

A

)

,
(

x̄
B
, ȳ

B

)

,
(

x̄
C
, ȳ

C

)

and
(

x̄
D
, ȳ

D

)

,

and then collecting the coefficients in the front of U
(6,7,8,9)

– these are theM
1αβ

in eq.(23), while the rest of the terms are

stashed into the right-hand-side terms R
1β

, where α = 1, 2, 3, 4 and β =A,B,C and D.

Notably, the cell-centered solutions in the neighbor cells are directly available from the solved-for DoFs, to the

order of interest:

U
(

xβ , yβ

)

= U
(0)β
−

− 1
Ω
β

∫

Ω
β




V

(3)β

(

x−x
β

)2

2
+ V

(4)β

(

x − x
β

) (

y − y
β

)

+ V
(5)β

(

y−y
β

)2

2




dΩ + O

(

h4
) (25)

where by V
(n)

we denote the DoFs in terms of the Taylor basis functions. Thus, V
(3,4,5)β

are mapped from U
(n)β

using

eq.(64).

This assembly procedure can be easily coded for a generic set of the rDG
Pn Pm

reconstruction/mesh geometry.

Slope-consistency constraints. The next eight equations represent the requirement for the extended solution shape

to be consistent with the point-wise solution derivatives, in the face-neighboring cells A, B, C and D. For derivatives

in x-directions,

∂

∂x̄
U (x̄, ȳ) = L

(P3)

2TE





U
(0)

U
(1)

. . . .
U

(9)





E

∂

∂x̄





T
(0)

(x̄, ȳ)

T
(1)

(x̄, ȳ)

. . .
T

(9)
(x̄, ȳ)





(26)

The assembly procedure is straightforward – set (x̄, ȳ) to
(

x̄
A
, ȳ

A

)

,
(

x̄
B
, ȳ

B

)

,
(

x̄
C
, ȳ

C

)

and
(

x̄
D
, ȳ

D

)

, collect the coefficients

in the front of U
(6,7,8,9)

– these are theM
2αβ

in eq.(23), and collect all the rest into right-hand-side terms R
2β

.

The cell-centered derivatives V
(1)β

and V
(2)β

in the neighbor cells are available from the solved-for DoFs, to the

order of interest (the 4th), using eq.(64).

A similar procedure is applied for the slopes in the y-direction, to assembleM
3αβ

and R
3β

.

Curvature-consistency constraints. The rest of the 12 equations are designed to enforce the point-wise curvature

consistency. For example, for the second derivatives in x-direction,

∂2

∂x̄2
U (x̄, ȳ) = L

(P3)

2TE





U
(0)

U
(1)

. . .
U

(9)





E

∂2

∂x̄2





T
(0)

(x̄, ȳ)

T
(1)

(x̄, ȳ)

. . .
T

(9)
(x̄, ȳ)





(27)

which can be used to assembleM
4αβ

and R
4β

.

Similar equations are applied to assembleM
5αβ

andR
5β

from the cross-derivatives ∂2

∂x̄ ∂ȳ
, andM

6αβ
andR

6β
from ∂2

∂ȳ2 .

The cell-centered curvatures V
(3)β

, V
(4)β

and V
(5)β

in the neighbor cells are available from the solved-for DoFs, to

the 4th order of interest, using eq.(64).

Least-Squares Solution. Once the non-square matrix M and the r.h.s. vector R are assembled, the least-squares

problem, eq.(23), can be solved for U
(6,7,8,9)

as:

[

U
(6)
,U

(7)
,U

(8)
,U

(9)

]T
=

(

M
T

M
)−1 (

M
T

R
)

(28)
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Importantly, before applying eq.(28), both M and R are normalized by first finding the element of the matrix M with

the largest absolute value, M
max

, and then dividing both M and R by M
max

. This helps to get a better conditioned

matrix inversion in eq.(28), which is especially relevant for the higher-order (> 3rd) reconstructions.

Blended recovery/reconstruction operator. We found that a better (more accurate) solution can be achieved by

adding integral (weak) statements into the least-squares formulation eq.(23). In this case, the least-squares problem

become:




M
11A

M
12A

M
13A

M
14A

...

M
61D

M
62D

M
63D

M
64D

M
71o

M
72o

M
73o

M
74o

...





︸                                     ︷︷                                     ︸

M





U
(6)

U
(7)

U
(8)

U
(9)





=





R
1A

...

R
6D

R
7o

...





︸   ︷︷   ︸

R

(29)

where the equations

M
71o

U
(6)
+M

72o
U

(7)
+M

73o
U

(8)
+M

74o
U

(9)
= R

7o
, o = 0, ...,N

7
(30)

are added to enforce (in the least-squares sense) the integral consistency (recovery). In eq.(30), N
7

could optionally

be 0, 2 or 5, depending on the order of weak statements decided to be “blended in” (cell-average-, slope- or curvature-

“integral consistency”)10.

More specifically, the integral statements being implemented are

∫

Ω
β

ω
w
U (x, y)B

(o)β
(x, y) dΩ =

ω
w
U

(o)β

A
(o)

(31)

where the ω
w

is the weight of the integral statements11; the U (x, y) is the reconstructed solution in the cell under

consideration, eq.(22); the B
(o)β

is the orthogonal basis function (the oth-order) in the neighbor cell β; the A
(o)

is the

normalization coefficient, as defined by eq.(21); and the U
(o)β

is the oth-order DoF in the neighbor cell β. The eq.(31)

corresponds to the constraints utilized in the in-cell recovery schemes, as introduced in [45, 46]. This enforces the

Sobolev-space consistency of the reconstructed fields, with the solved-for DoFs – here, in the least-squares sense.

To convert eq.(31) to the discrete form eq.(30), we replace the integral with the summation over the Gauss inte-

gration points in the neighbor cells β, collect the coefficients in the front of U
(6,7,8,9)

– these are theM
7αo

, and stash all

the rest terms into the r.h.s. terms R
7o

. This assembly procedure can be easily generalized to any order and in three

dimensions.

3.2.2. Inter-cell reconstruction

The inter-cell reconstruction is applied to compute parabolic (and elliptic) operators. For these, we consider the

unions of the face-neighboring cells. For each pair, we reconstruct a “consistent-with-parabolic-operator” solution

profile, which is used to compute the diffusion flux at each Gauss point of the corresponding face.

Without loss of generality, we will discuss a union of cells E and A, as depicted in Figure 3. For 2D rDG
P

2
P

3
, the

inter-cell reconstructed solution is

U (x̄, ȳ) = V
(0)

+V
(1)
T

(1)
(x̄, ȳ) + V

(2)
T

(2)
(x̄, ȳ) + V

(3)
T

(3)
(x̄, ȳ)+

+V
(4)
T

(4)
(x̄, ȳ) + V

(5)
T

(5)
(x̄, ȳ) + V

(6)
T

(6)
(x̄, ȳ)+

+V
(7)
T

(7)
(x̄, ȳ) + V

(8)
T

(8)
(x̄, ȳ) + V

(9)
T

(9)
(x̄, ȳ) + O

(

h4
) (32)

10In most cases considered here, we enforce only the cell-average (N
7
= 0) consistency.

11In most cases considered here, ωw is set to 10, i.e. contributing ten times more than the strong statements.
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Figure 3: On the inter-cell reconstruction.

where x̄ =
(

x − x
AE

)

, ȳ =
(

y − y
AE

)

, and
(

x
AE
, y

AE

)

=
(

x
A
+x

E

2
,

y
A
+y

E

2

)

. The degrees of freedom being reconstructed are

V
(0,...,9)

. Note that these are based on the Taylor basis functions, as it is more consistent/convenient with the intended

use in the diffusion operators (the Fourier fluxes and the Newtonian viscous stress tensor).

To find these DoFs, we form the following normal least-squares problem:





M
0,0A

M
0,1A

... M
0,9A

M
0,0E

M
0,1E

... M
0,9E

...

M
9,0A

M
9,1A

... M
9,9A

M
9,0E

M
9,1E

... M
9,9E

M
10,0o

M
10,1o

... M
10,9o

...





︸                                   ︷︷                                   ︸

M





V
(0)

V
(1)

. . .

V
(9)





=





R
0A

R
0E

...

R
9A

R
9E

R
10o

...





︸   ︷︷   ︸

R

(33)

The first 20 equations enforce a point-wise consistency of the inter-cell reconstructed solution with the in-cell recon-

structed solutions, in the cell centers (r
A

and r
E
). These are – two solution values, four slopes, six curvatures, and eight

(reconstructed) third-order derivatives. In the generic representation, the individual equations used for the assembly

are

∂s+k

∂x̄sȳk
U (x̄, ȳ) =





V
(0)

V
(1)

. . .
V

(9)





AE

∂s+k

∂x̄sȳk





T
(0)

(x̄, ȳ)

T
(1)

(x̄, ȳ)

. . .
T

(9)
(x̄, ȳ)





(34)

Similar to the procedure used for the in-cell reconstruction, we collect the coefficients in the front of V
(0,...,9)

(these

are theM
γ,αβ

in eq.(33)), and stash all the rest into right-hand-side termsR
γβ

. In this case, (γ, α) = 0, ..., 9, and β =A, E.

12



The equations

M
10,0o

V
(0)
+M

10,1o
V

(1)
+ ... +M

10,9o
V

(9)
= R

10o
, o = 0, ..., 9 (35)

represent the “blended-in” weak statements, which increase the accuracy and the robustness of the reconstruction.

Similar to the in-cell reconstruction, we use Gaussian quadrature integration rules and the larger weights for these

constraints12.

Finally, after the non-square matrix M and the vector R are assembled, we solve for

[

V
(0)
,V

(1)
, . . .V

(9)

]T
=

(

M
T

M
)−1 (

M
T

R
)

(36)

The matrix M and the vector R are scaled byM
max

, and we use the Gauss-Jordan algorithm for the matrix inversion.

3.3. Boundary conditions

Boundary elements require special consideration. In this case, some of the neighbor elements are missing. While

it is totally acceptable to just drop corresponding equations from the least-squares formulations (the resulting linear

algebra is still well-behaved), we do enforce boundary conditions in the reconstruction, as described in [44]. We be-

lieve that infusing BC into the reconstruction results in a better-conditioned and more accurate discretization scheme.

For the sake of brevity, we refer to [44] for more detail description and explanations.

3.4. Putting all together

The weighted residual vector for each finite element can be expressed as

R
(k)
= ∂

t
U

(k)
+ A

(k)

∫

Γe

(

F
j
− D

j

)

n
j

B
(k)

|J|
dΓ −

− A
(k)

∫

Ωe

[
(

F
j
− D

j

)
(

∂
j
B

(k)
−
B

(k)

|J|
∂

j
|J|

)

+ SB
(k)

]

1

|J|
dΩ

︸                                                                   ︷︷                                                                   ︸

S(U)

(37)

where k denotes the DoFs we solve for, and

∂
j
B

(k)
=
∂B

(k)

∂ξ

∂ξ

∂x
j

+
∂B

(k)

∂η

∂η

∂x
j

+
∂B

(k)

∂ζ

∂ζ

∂x
j

, x
j
= {x, y, z} (38)

∂
j
|J| =

∂ |J|

∂ξ

∂ξ

∂x
j

+
∂ |J|

∂η

∂η

∂x
j

+
∂ |J|

∂ζ

∂ζ

∂x
j

(39)

The discrete forms of these residuals will appear in the non-linear solver, as described in Section 4.

The face- and domain-integrals,
∫

Γe

and
∫

Ωe

, correspondingly, are replaced by the weighted summation over the

corresponding Gauss points. The number of quadrature points used is chosen to integrate exactly polynomials of the

(2n)th and the (2n + 1)th order for volume and surface inner products in the reference element, respectively, with the n

denoting the order of the underlying DG.

The hyperbolic fluxes F
j
are computed using piecewise-discontinuous solutions at each face Gauss point, evaluated

using the in-cell reconstructed solution profiles (Section 3.2.1), from each side of the face. Using these solutions, U
(g,L)

12Mostly, we set the weight to 10.
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and U
(g,R)

, an approximate Riemann solver is applied to compute the numerical flux. For the test cases with relatively

large Mach numbers, we use the Local Lax Friedrichs (LLF) scheme [55]:

F
(g)

j
=

1

2

(

F
(g,L)

j
+ F

(g,R)

j
+ α

LLF
λ
(

U
(g,L)

− U
(g,R)

))

(40)

where λ is the maximum eigenvalue, while α
LLF

is the adjustable numerical diffusion coefficient – usually set to 1.

For the Navier-Stokes solver with very low Mach (M) numbers, we either set the coefficient α
LLF

to small numbers

(say, for M = 10
−2

, α
LLF
= 0.1), or use the following “incompressible” variation:

F
(g)

j
=

1

2

(

F
(g,L)

j
+ F

(g,R)

j
+ |v|

max

(

U
(g,L)

− U
(g,R)

))

(41)

where |v|
max

is the input parameter, corresponding to the maximum material velocity for the problem under considera-

tion.

For evaluation of the diffusion fluxes, we utilize the inter-cell reconstructed solution profiles (Section 3.2.2), to

compute the corresponding numerical diffusion flux at each face Gauss integration point. Here, we do not consider any

jumps in material properties, though we allow non-linearity of the diffusion coefficients (i.e., temperature-dependent).

The fluxes and source terms appearing in the domain integral of eq.(37) are evaluated using the in-cell recon-

structed solution profiles. Because we are using the in-cell reconstructed solution, there is no need for modifications

as discussed in [30], referred to as RDG-2x (twice-partially-integrated), including extra boundary terms. Rather,

our approach is along the lines of the RDG-1x (once-partially-integrated), which offers an easy implementation of

non-linear diffusion operators.

4. Fully-Implicit Time Discretization

An implicit time discretization of Eq.(1) can be written as

U
[k]

= U
[n]

+ ∆t
k∑

r=1

a
kr
S

(

U
[r]
)

, k = 1, ..., s − 1

U
[n+1]

= αU
[n−1]

+ βU
[n]

+ ∆t

(

b
0
S

(

U
[n]
)

+
s∑

r=1

b
r
S

(

U
[r]
)
) (42)

where s is the total number of implicit Runge-Kutta (IRK) stages, while a
kr

and b
r

are the stage and the main scheme

weights, respectively. Particular cases of interest here are:

BE1 The first-order Backward Euler scheme, α = 0, β = 1, s = 1, b
0
= 0 and b

1
= 1.

BDF2 The second-order Backward Difference scheme, α = − ∆t2

∆t
n−1 (2∆t+∆t

n−1 )
, β = ∆t

∆t
n−1

∆t+∆t
n−1

2∆t+∆t
n−1

, s = 1, b
0
= 0 and

b
1
= 1.

CN2 The second-order Crank-Nicholson scheme, α = 0, β = 1, s = 1, b
0
= 1

2
and b

1
= 1

2
.

ESDIRKp The pth-order Explicit, Singly-Diagonal Implicit Runge-Kutta schemes, defined by b
0
= 0 and the Butcher

tableau of the following form:

0 0 0 0 0 ... 0

c
2

a
21

γ 0 0 ... 0

c
3

a
31

a
32

γ 0 ... 0

... ...

c
s−1

a
(s−1)1

a
(s−1)2

... ... γ 0

1 b
1

b
2

b
3

... b
(s−1)

γ

b
1

b
2

b
3

... b
(s−1)

γ

b̂
1

b̂
2

b̂
3

... b̂
(s−1)

b̂
(s)

(43)
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where c
r

denotes the point in time of the rth-stage, t
[n]

+ c
r
∆t. Note that the first stage is explicit, and the

diagonal elements for all stages r > 1 are the same, a
rr
= γ. Note that the scheme is embedded, i.e., the

pth-order ESDIRKp scheme allows to compute the (p − 1)th-order solution, as

U
[n+1]

= U
[n]

+ ∆t
s∑

r=1

b̂
r
S

(

U
[r]
)

(44)

The coefficients of ESDIRK
3,4,5

’s Butcher tableau were derived in [7, 8, 46], and summarized in [44].

All these schemes, with the exception of CN2, are L-stable. CN2 is A-stable [20].

4.1. Newton-Krylov (NK) solver

Each stage of the IRK eq.(42) requires a solution of the non-linear system in the form

~res
(

~X
)

= 0 (45)

where

~X =
(

U
T

(k=0,...,p)
1

, U
T

(k=0,...,p)
2

, ..., U
T

(k=0,...,p)
Ncells

)T

(46)

is a solution vector which includes all (p + 1) degrees of freedom for all variables in all N
cells

computational cells13.

4.1.1. Newton’s method

We solve Eq.(45) with Newton’s method [27], iteratively, as a sequence of linear problems defined by

J
a

δ ~X
a

= − ~res
(

~X
a
)

(47)

The matrix J
a

is the Jacobian of the ath Newton’s iteration and δ ~X
a

is the update vector. Each (i, j)th element of the

Jacobian matrix is a partial derivative of the ith equation with respect to the jth variable:

J
i, j
≡
∂res

i

∂X
j

(48)

The linear system Eq.(47) is solved for δ ~X
a

, and the new Newton’s iteration value for ~X is then computed as

~X
a+1

= ~X
a

+ λ
a

δ ~X
a

(49)

where λ
a

is the step-length determined by a line search14 procedure [13], while δ ~X
a

is the search direction. Newton’s

iterations on ~X are continued until the convergence criterion

∣
∣
∣
∣

∣
∣
∣
∣ ~res

(

~X
a
)∣∣
∣
∣

∣
∣
∣
∣
2

< tol
N

∣
∣
∣
∣

∣
∣
∣
∣ ~res

(

~X
0
)∣∣
∣
∣

∣
∣
∣
∣
2

(50)

is satisfied. The nonlinear tolerance tol
N

is varied from 10−3 to tol
N
= 10−8.

13It is instructive to emphasize that the reconstructed DoFs are not a part of the solution vector.
14In most simulations presented here, we used either the cubic backtracking or the critical-point algorithm, as implemented in PETSC [4].
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4.1.2. Krylov subspace iterations (GMRES)

For the linear solver, we use the Arnoldi-based Generalized Minimal RESidual method (GMRES) [54]. Since

the GMRES does not require individual elements of the Jacobian matrix J, the matrix never needs to be explicitly

constructed. Instead only matrix-vector multiplications J~κ are needed, where ~κ are Krylov vectors. The action of the

Jacobian matrix are approximated in the Jacobian-free manner, by Fréchet derivatives

J~κ ≈
~res

(

~X + ε~κ
)

− ~res
(

~X
)

ε
(51)

(see [27] for choosing ε). Here, we use the inexact Newton’s method [27], solving to a tight tolerance only when the

added accuracy matters – i.e., when it affects the convergence of the Newton’s iterations. This is accomplished by

making the convergence of the linear residual proportional to the non-linear residual:

∣
∣
∣
∣

∣
∣
∣
∣J

a

δ ~X
a

+ ~res
(

~X
a
)∣∣
∣
∣

∣
∣
∣
∣ ≤ νa

∣
∣
∣
∣

∣
∣
∣
∣ ~res

(

~X
a
)∣∣
∣
∣

∣
∣
∣
∣ (52)

where ν
a

is a constant15.

4.1.3. Preconditioning GMRES

Because GMRES stores all of the previous Krylov vectors, it is necessary to keep the number of iterations relatively

small, to prevent the storage and CPU time from becoming prohibitive. This is accomplished by preconditioning the

linear system. We are using the right-preconditioned form of the linear system [53],

J
a

P
−1

︸︷︷︸

Ĵ

Pδ ~X
a

︸︷︷︸

δ~Y
a

= − ~res
(

~X
a
)

(53)

where P−1 approximates J−1. The right-preconditioned version of Eq.(51) is

JP
−1~κ ≈

~res
(

~X + εP−1~κ
)

− ~res
(

~X
)

ε
(54)

Finding a good preconditioner is often a combination of art, science, and intuition. A mathematically good precon-

ditioner should efficiently cluster the eigenvalues of the iteration matrix [27, 53]. A detailed discussion of the pre-

conditioning procedure
{

P−1~κ
}

is beyond the scope of the present study. In summary, we use the lagged-thresholded

(reduced-size) Jacobian matrix J
LT

as P. The J
LT

is evaluated using the smallest-last-ordering (SLO) graph coloring

algorithm [10]. The matrix inversion P−1 is done using parallel LU decomposition. We will discuss all these details

in a future publication.

4.1.4. Preconditioning with primitive variable formulation

While the residual function eq.(13) is written to satisfy the underlying conservation laws, conservative variables

U are often a poor choice to be solved for, as the Jacobian matrix J
i, j
≡

∂res
i

∂U
j

might be extremely ill-conditioned.

This is a case for low-Mach-number and stiff compressible fluids, which are of interest here. For stiff fluids (such as

water or liquid metals), small variations in density cause large variations of pressure and internal energy. On the other

hand, density is rather weakly sensitive (or even completely insensitive in the incompressible limit M → 0) to both

pressure and internal energy. Similarly, total energy is a poor choice for the low-speed flow regime, because it is very

weakly dependent on the kinetic energy, as v2

2
≪ u. All these lead to degenerate (ill-conditioned) Jacobian matrices

for underlying linear algebra.

One of the great strengths of the non-linear Newton-Krylov algorithm is that it is not required to solve for conser-

vative variables. Instead, one can (should) solve for another (mathematically equivalent) set of unknowns, which will

15In most computations of the present study, we use νa = 10−3.
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render a better conditioned system. We denote this set of unknowns as primitive variables, W.

Introducing a transformation

δU =
∂U

∂W
δW (55)

linear steps of Newton iterations (i.e., eq.(47)) can be written as:

∂ ~res

∂U

∂U

∂W
︸     ︷︷     ︸

J̃
i, j
≡
∂res

i
∂W

j

δW = − ~res (56)

Note that with a proper choice of W, the Jacobian matrix J̃
i, j
≡

∂res
i

∂W
j

is better conditioned. This should be viewed

as preconditioning, as it is conceptually similar to eq.(53). It is important to note that the change of variables does

not affect conservation, as the residual functions are still written in the conservative form. Upon the convergence of

non-linear iterations, the conservation is satisfied to the chosen tolerance level.

In most computations presented here, we use the [PvT ]-formulation:

W = [P, u, v,w, T ]T (57)

i.e., the piecewise-polynomial solution representation, as well as the solved-for and reconstructed DoFs correspond to

pressure, material velocity and temperature.

The main technical challenge in implementing this preconditioning – is an ability to map the solved-for DoF

(W) to those of the conservative vector U, as these are needed for evaluation of the (weighted) undivided differences

(time-derivatives)
(

U
[k]

− U
[n]
)

and
(

U
[n+1]

− αU
[n−1]

− βU
[n]
)

, in eq.(42). This mapping is described in Appendix C.2.

5. Numerical Experiments

In this section, we demonstrate performance of the new algorithm. We start with the discussion of the method’s

accuracy, consistency and convergence, using the heat diffusion test on highly distorted meshes (Kershaw problem,

Section 5.1.1) and the manufactured solution for the compressible Navier-Stokes equations (Section 5.1.2). Then, we

move to fluid flow problems, increasing the level of complexity, from forced convection (Section 5.2.1), to vortex-

shedding flows (Section 5.2.2), then to natural convection flows (Section 5.3), finishing with melt pool dynamics with

crust formation and stable/unstable stratification effects (Section 5.4). This test suite demonstrates a wide range of the

method’s applicability.

5.1. Convergence and Consistency

5.1.1. m-consistency, mesh-imprint effects

The linear (1-) consistency as a constraint required to achieve a desired level of accuracy in gradient calculations

of finite-volume methods was discussed by Barth and Jesperson in [5]. This is a highly desired property of the recon-

struction, which is not only the measure of accuracy and robustness, but also a feature which minimizes mesh imprint

effects.

It is well known that the least-squares reconstruction of the in-cell gradients (i.e., our rDG
P

0
P

1
) is linearly-consistent

[5]. This means that linear field is reconstructed exactly (to round-off), on any mesh. Since our rDG is hierarchical,

all rDG
Pn P

n+1
for n > 0 are linearly consistent as well, as verified in [44]. The method however is not quadratically

consistent on irregular meshes. This is because the second derivatives in reference space are different from those in

physical space (due to transformation), and since the method is hierarchical in reference space, there is no guarantee

that a quadratic shape in physical space is reconstructed exactly. However, if the reconstructed function is quadratic

in reference space, it is reconstructed exactly, as demonstrated using a regular mesh16 in [44]. Similar, the rDG
P

2
P

3

16On regular meshes, the reference and physical space are consistent, in terms of spatial derivatives.
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Figure 4: Kershaw heat diffusion test, using the rDG
P

2
P

3
.
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method is cubically consistent in reference space. While both the rDG
P

0
P

1
and rDG

P
1

P
2

are not cubically consistent, the

reconstruction errors diminish with mesh refinement, with the expected second- and the third-order, for the rDG
P

0
P

1

and the rDG
P

1
P

2
scheme, respectively (see [44] for demonstration).

To demonstrate the method’s ability to compute a diffusion operator through a mesh with highly skewed elements,

we utilize the problem introduced by Kershaw in [25]. In the computational domain of size 1×1, we generated a mesh

with a distinct Z pattern, Figure 4(a). We solve the non-linear heat conduction equation in temperature formulation

(see [44]), with temperature-dependent thermal conductivity, κ (T ) = κ
0
+ κ

1
T , where κ

0
= 1 and κ

1
= 1

10
. Initial tem-

perature is set to 1. Neumann boundary conditions are applied at horizontal walls. For vertical walls, we use Dirichlet

boundary conditions, with T
LFT
= 2 at the left wall, and T

RGT
= 1 at the right wall. Computations are performed with

the 3rd-order accurate ESDIRK3 time discretization, using time step ∆t = 10
−2

, which corresponds to Fourier number

Fo = α∆t
h2 ∼ 2000, where h is the scale of the smallest elements and α is the coefficient of thermal diffusivity. Nearly

steady-state is achieved at t = 1.

Computational results are shown in Figure 4(b,c,d), for the 4th order-accurate space discretization rDG
P

2
P

3
. It can

be clearly seen that no mesh-imprint “chevron” patterns are observed, resulting in nearly perfect one-dimensional tem-

perature field, with vertical straight isolines of temperature. The undesirable “chevron” pattern effects are attributed

to many cell-centered schemes for diffusion operators, as reported by Rebourcet in [52]. We believe that negligible

mesh-imprinting of our scheme is attributed to the above-discussed m-consistency.

5.1.2. Manufactured solution

Next, we demonstrate the accuracy and convergence of the method, using the following manufactured solution for

compressible Navier-Stokes equations in two dimensions:

T (x, y, t) = T̄ +
(

δT
0
+ a

T
sin (2πt)

)

cos
(

2π
(

x + v
1
t
))

sin
(

2π
(

y + v
2
t
))

P (x, y, t) = P̄ +
(

δP
0
+ a

P
sin (2πt)

)

sin
(

2π
(

x + v
1
t
))

cos
(

2π
(

y + v
2
t
))

v
1

(x, y) =
(

δV
0
+ a

v
sin (2πt)

)

cos
(

2π
(

x + v
1
t
))

sin
(

2π
(

y + v
2
t
))

v
2

(x, y) =
(

δV
0
+ a

v
sin (2πt)

)

sin
(

2π
(

x + v
1
t
))

cos
(

2π
(

y + v
2
t
))

(58)

where T̄ , P̄, δT
0
, δP

0
, δV

0
, a

T
, a

P
, a

v
, v

1
, v

2
are given constants.

The solution eq.(58) corresponds to translating (with velocity w =
(

v
1
, v

2

)

) and oscillating (with amplitudes a
T
,

a
P

and a
v
) waves. In the following simulations, we set w =

(
1
10
, 1

10

)

, P̄ = 1, T̄ = 1, δP
0
= 1

10
, δT

0
= 1

10
, δV

0
= 10

−4

,

a
P
= 1

20
, a

v
= 1

100
, and a

T
= 1

20
. We used the γ-gas equation of state (Appendix A), with γ = 1.4. Both thermal con-

ductivity and dynamic viscosity are set to be constant, κ = 1
10

and µ = 1
10

. Source terms generating this manufactured

solution are computed using the symbolic manipulation in Mathematica. We used the computational domain shown

in Figure 5. There are six geometrical parameters, describing the computational domain: X
0
= −1, X

1
= 1, Y

0
= − 1

2
,

Y
1
= 1

2
, α = 10

◦

and β = 10
◦

. The α and β are generally varied, to allow different levels of mesh stretching/distortion.

Dirichlet boundary conditions are applied at all boundaries of the domain.

First, we measure space convergence rates, by using the 5th-order-accurate time discretization, ESDIRK5, and

setting time stepping to
(

t = 2 × ∆t = 10
−3
)

. This ensures that time discretization errors are smaller than space dis-

cretization errors. The results are shown in Figure 6, for the convergence of the L
2
-norm velocity-magnitude errors.

As one can see, all three rDG schemes do converge consistently – i.e., with the second order for the rDG
P

0
P

1
, with the

third-order for the rDG
P

1
P

2
, and with (approximately) the fourth-order for the rDG

P
2

P
3
.

Time convergence is demonstrated in Figure 7, for theL
2
-norm of the velocity magnitude error. In the simulations,

we used the rDG
P

2
P

3
on a mesh with 32,762 elements, to ensure small spatial discretization errors. This space reso-

lution is sufficient to measure nearly asymptotic convergence rates for time discretization schemes up to the 3rd-order

accurate. The 4th- and 5th-order accurate ESDIRK4,5 schemes exhibit nearly the 4th-order convergence rate when time

steps are large. The convergence flattens for smaller time steps, when space discretization errors become dominant.
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Figure 5: Domain and mesh setup for the manufactured-solution test problem. α = β = 10
◦
.
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Figure 7: Convergence of the velocity magnitude field, with time step refinement and different time discretization schemes.

5.2. Forced Convection

5.2.1. Driven-cavity thermal flows

Next, we move to forced-convection fluid flow in an enclosed domain. The “Lid-Driven Cavity” (LDC) problem

has been established as a standard “benchmark” test for numerical methods of (nearly-) incompressible fluid dynam-

ics. In [18], Ghia et al. employed a finite-difference method, using a steady-state vorticity-stream-function (ω − ψ)

formulation of incompressible flow, to obtain solutions in a wide range of Reynolds (Re) numbers. Using grids with

high resolution (129×129 and 257×257) and “coupled strongly-implicit multigrid” method, Ghia et al. provided “ref-

erence” data for comparison of velocity profiles at the vertical and horizontal centerlines of the square cavity, with

no-slip vertical and bottom walls, and a moving top wall. Here, we will simulate this problem using the compress-

ible (thermal) formulation, setting the flow Mach number (M) to very low values. We used the 2-parameter EOS, as

described in Appendix A. Most of the simulations shown here are done with M = 10
−2

. For the energy equation, we

set isothermal boundary conditions at vertical walls (T
LFT
= 1 and T

RGT
= 2), and adiabatic boundary conditions at

horizontal walls.

First, we verified the code for the low-Reynolds case of Re = 400, which corresponds to a steady-state flow

field. Solution results are compared to those of [18], and presented in [44] – all showing an excellent agreement.

Our 4th-order rDG
P

2
P

3
captures the secondary vortices in the lower corners of the cavity (both – the BR1 and BL1,

following notation from [18]), with a grid resolution as low as 32×32. Moreover, the centerline velocity profiles are

indistinguishable from those reported in [18], even for grid resolution as small as 16×16, as compared to the reference

solution by Ghia et al. on the mesh of 129×129.

Here, we will be focusing on the high-Re-number case of 104, when the flow dynamics is more rich, and the

advantages of high-order schemes become more evident. Snapshots of the flow evolution are shown in Figures 8 and

9. As expected for these high Re numbers, the solution is unsteady, and the eddies are constantly evolving: forming,

breaking, disappearing17. We observe numerous secondary vortices formed, BR
1,2

and BL
1,2

, which are dynamically

17In the present study, we are using LLNL’s visualization tool VisIt, with recently added “multi-resolution” option to render high-order piecewise-

discontinuous solution representations in elements. In essence, VisIt allows to refine original elements, and high-order in-cell solution is mapped
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Figure 8: Dynamics of the velocity magnitude and streamlines for rDG
P

2
P

3
, mesh resolution 128×128, ESDIRK5, and ∆t = 1. Re = 104 .
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Figure 9: Dynamics of the temperature field for rDG
P

2
P

3
, mesh resolution 128×128, ESDIRK5, and ∆t = 1. Re = 104 .
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Figure 10: On mesh convergence of the velocity magnitude and streamlines, rDG
P

0
P

1
(left) vs. rDG

P
2

P
3

(right). ESDIRK5 and ∆t = 1. Re = 104.

Pr = 0.7.
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growing and decaying18. Also, the large central vortex is unstable and gyrating with a period of approximately 10

time units. The jet is also unsteady, wiggling and causing the vortical flows in the corners of the cavity to become

unstable, providing enhanced thermal mixing in the domain. It is instructive to note that we ran these simulations with

large time steps (CFL
mat
=128), without significant loss of accuracy. This is because of the 5th-order-accurate L-stable

time discretization scheme ESDIRK5. Similar simulations using the 2nd-order BDF2, with the same time step, exhibit

significant dissipation, damping instabilities of the flow field. To get comparable (i.e., no noticeable damping) simula-

tions with BDF2, one needs to run with CFL
mat
< 32. It is important to note that the material19 CFL does not define the

dynamic time scales of this problem. Rather, the dynamic time scale corresponds to the lifetime of secondary eddies.

Therefore, one could (and should) run these simulations with time steps significantly exceeding the residence time

of particles in elements. This can be achieved with fully-implicit time discretization schemes20, like deployed here,

provided that time discretization errors are negligible.

Table 1: rDG
P

0
P

1
vs. rDG

P
2

P
3

Measure rDG
P

0
P

1
(512 × 512) rDG

P
2

P
3

(64 × 64) Benefit

# Elements 262,144 4,096 1
64

# DoFs 1,048,576 96,304 1
11

CFLmat =
|v|∆t

h
512 64 1

8

CFLaco =
c∆t
h

51,200 6,400 1
8

Foµ =
µ∆t

ρh2 26 0.41 1
64

An example of the mesh convergence is demonstrated in Figure 10. As one can see, with the 4th-order-accurate

rDG
P

2
P

3
, an adequate flow resolution is achieved with the 64×64 mesh21. The 2nd-order-accurate rDG

P
0

P
1

is exces-

sively diffusive, damping instabilities and smearing (“thickening”) both the boundary layer and the jet. Statistically

comparable-to-rDG
P

2
P

3
(and adequate) rDG

P
0

P
1

solution is achieved with a mesh resolution of 512×512. The ben-

efits of using high-order scheme are outlined in Table 5.2.1. In conjunction with the underlying linear algebra, we

would like to emphasize that the high-order method involves an order-of-magnitude smaller solution vector, which

is generally better for approximate matrix inversion algorithms. In addition, all important CFL and Fo numbers are

significantly lower, due to larger mesh sizes, which is very important for better conditioning of linear steps in the

Newton iteration algorithm. However, these factors have to be put together with a significantly higher cost per DoF

into the embedded refined mesh, with the user-defined refinement ratio, achieving high-resolution solution images even on very coarse meshes (see

[44] for details).
18This high-Re case was also presented in [18]. However, Ghia et al. used a steady-state formulation, missing important dynamical flow features.
19Because of the compressible formulation, we use two distinct CFL numbers – one based on material velocity, CFLmat , and another based on

sound speed, CFLaco .
20It is also instructive to note that operator-splitting algorithms, like variations of the projection method [6, 9, 19], are inaccurate when deployed

with CFLmat ≫ 1. Moreover, when CFLmat ≫ 10, these methods become unstable [42].
21In fact, the general flow features are captured well even on a coarse, 32×32, mesh, with only some small-scale vortex structures missed due to

very coarse mesh in the lower corners, grossly under-resolving secondary eddies. Moreover, the gyrating motion of the central vortex is captured

very well, in difference to the 2nd-order-accurate rDG
P

0
P

1
, which damps this motion completely, for mesh resolutions below 128×128.
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for the rDG
P

2
P

3
. Our estimate of the performance (in terms of CPU time) for our implementation of the algorithm

shows that the rDG
P

2
P

3
on 64 × 64 mesh is roughly three times faster than the same simulation with the rDG

P
0

P
1

on a

512×512 mesh. We believe that the benefit of the high-order schemes can be significantly higher, if one could exploit

a potential for enhancing the algorithms performance, using recent disruptive trends in the HPC node architecture,

such as GPUs and RAJA portability layer [24]. We believe that some features of the high-order rDG, such as locality

and the relatively high cost per DoF (compared to the low-order variants) would make the rDG highly compatible

with node-level parallel programming models and multi-threading.

5.2.2. Shedding Flow past a Triangular Wedge

In our next example, we demonstrate performance of our 4th-order rDG
P

2
P

3
, for capturing unstable vortical flow in

the external flow past an obstacle. We placed a two-dimensional wedge (an equilateral triangle, with the side length 1)

in a computational domain of size 40×30, five units downstream of the inlet. An inflow boundary condition is applied

at the left, outflow (Neumann) boundary conditions are enforced at the right, and freestream boundary conditions

are set at the top and bottom. At the wedge surface, no-slip isothermal boundary conditions are enforced. We used

the γ-gas EOS (γ = 1.4). The Reynolds number (based on the wedge-side length and freestream velocity) is set to

Re = 102, while the Prandtl number was set to Pr = 0.7. Simulations are performed for freestream M
∞
= 10

−2

. More

details of the computational setup are given in [44].

In Figure 11, we show solutions for the velocity magnitude field, when the unsteady Kármán street is fully estab-

lished, comparing the rDG
P

0
P

1
and the rDG

P
2

P
3
, on a sequence of successively refined meshes. The coarsest mesh of

2,055 elements is also shown in Figure 11(e). Notice that the mesh has high-aspect-ratio elements in the boundary

layer. Also, there are transition zones with high ratio of element sizes. We intentionally use this (generally considered

“bad”) mesh – as many discretization schemes are known to struggle on highly distorted, stretched, high-aspect-ratio

meshes.

With the 4th-order rDG
P

2
P

3
, the vortex shedding is captured on the coarsest mesh, Figure 11(a,e). We would like

to emphasize that because of the high-order piecewise-cubic in-cell solution representation, the size of the captured

vortices are comparable to the element size. The piecewise-linear rDG
P

0
P

1
kills these flow features on this mesh,

resulting in a steady wake behind the wedge, even for the finer mesh of 8,220 elements. With a further refinement (of

32,880 elements), the 2nd-order rDG
P

0
P

1
is able to capture the Kármán street, as well, but at a cost of 16 times more

elements and > 2.5 times more total DoFs solved-for.

5.3. Natural circulation

5.3.1. Thermally-driven flow

In this example, we add buoyancy. We will skip verification tests, and refer to [44], where we performed an

extensive benchmarking for thermally-driven flows in square cavities (comparing to [12]), and for Rayleigh-Bénard

convection (comparing to [41]). Here, we show the results for natural circulation in a non-square domain, as defined

by Figure 5, using α = β = 20
◦

. The flow is driven by gravity, due to the temperature difference ∆T̂ = T̂
LFT
− T̂

RGT
,

applied at the left and right walls. The top and bottom walls are adiabatic. We use the 2-parameter EOS, see Appendix

A. Simulations are performed on a sequence of Rayleigh numbers Ra = 104, 105 and 106. The Prandtl number was

fixed at Pr = 0.71. The maximum Mach number was varied from 10
−2

to 10−4, depending on the Ra number. For

buoyancy, we utilized the Boussinesq approximation. Computations are done using the BDF2 time discretization. For

all solved equations, non-linear tolerances are set to 10
−7

. For all runs, steady-state solutions have been achieved,

running with time steps corresponding to material CFL numbers greater than 50.

Computational results are shown in Figure 12, for three Ra numbers. As one can see, with the increase in Ra

number, the boundary layers become thinner, and the overall vortex flow pattern becomes more complex, forming a

secondary eddy, for Ra = 106. All flow features are captured well with the 4th-order rDG
P

2
P

3
, using the 64×32 mesh.

5.3.2. Natural convection with solid crust formation

In the next example, we modified the previous test, by adding solidification at the left wall. Initially, the fluid is

motionless, and the temperature is set well above the liquidus. In dimensionless units, T̂
init
= 2. The liquidus and
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Figure 11: Capturing vortex shedding behind a triangular wedge. Magnitude of the velocity vector, for quasi-steady solution, using rDG
P

2
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3
vs.

rDG
P

0
P

1
.
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Figure 12: Velocity/streamline (left) and temperature (right) distributions for different Ra numbers, with the rDG
P

2
P

3
on the mesh 64×32.
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Figure 14: History of the non-linear convergence for five time steps of the simulation with rDG
P

2
P

3
on mesh 128×64 and Ra = 106. CFLaco =

7, 550, CFLmat = 5.31, Foκ = 8, Foµ = 800.

solidus temperatures were defined to be T̂
L
= 1.5 and T̂

S
= 1.4, respectively. The transients are started dropping the

left wall temperature down to the liquidus temperature (smoothly, within one dimensionless time unit), and keeping it

at this level for awhile so that a nearly steady-state natural circulation is established, and then dropping the left wall

temperature more, below the solidus, down to T̂
LFT
= 1. The right wall temperature was kept const, at T̂

RGT
= 2, well

above the melting point. The top and bottom walls are kept adiabatic. This initiated a formation of the solid crust

layer, Figure 13. We used the viscosity-based material strength model, as discussed in Section 2.2 and Appendix B.

The parameters of this model are f
S
= 10

2

, α = 10 and ω = 2, which corresponds to the variation of the viscosity

factor as depicted in Figure 19. The scaling parameters for this test are: Ra = 106, Gr = 107, Re = 3, 162, Pr = 0.1

and S te = 4.854.

Simulations are performed with the 2nd-order BDF2 time discretization, setting the non-linear tolerances at the

level of 10
−7

. A sample of the non-linear convergence is shown in Figure 14. The convergence curves are typical for

quadratic rates (slightly curved upwards), at the first 2-3 iterations, before leveling off, at the asymptotic limit, when

the round-off errors become dominant.

The mesh convergence for the rDG
P

0
P

1
is demonstrated in Figure 13 (left). It can be seen that the 2nd-order dis-

cretization errors tend to suppress resolution of small vortical structures. Only with the mesh as large as 512 × 256,

we are getting the full resolution of all five vortical structures. Comparing to the rDG
P

2
P

3
(Figure 13, right), this

requires an order of magnitude more degrees of freedom, which effectively corresponds to significantly larger linear

algebra matrices to invert, and significantly larger CFL/Fo numbers involved (therefore, the stiffer the underlying lin-

ear solver). In terms of the CPU time, we do not get ten-fold speed-up, because the rDG
P

2
P

3
is more expensive per

DoF, than the rDG
P

0
P

1
– but still achieve a better (2-3 times) performance.

As noted in Section 2.2, phase transition is extremely difficult to treat numerically. This is due to very tight
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Figure 15: On “eigen-scopy” of the Jacobian matrices for different problems considered in the present study.
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Figure 16: Thermal loading curve for the melt pool convection test. The nominal (initial) wall temperature was T̂
LFT
= T̂

RGT
= 2.

coupling of the momentum and energy equations, which necessitates the use of the fully-implicit method, as described

in Section 4. This can be seen from the eigenvalue distributions, Figure 15, as computed using the Elemental package

[50], for Jacobian matrices of three numerical problems considered here. The first problem is the LDC (Section 5.2.1),

corresponding to a passive transport of the energy field, with one-way weak coupling of the momentum and energy

equations. The fastest time scale corresponds to the stiff acoustic (pressure) waves, which are embedded into our

formulation. The condition number22, as defined by the ratio of the largest-to-smallest eigenvalue magnitude, κ (an

indicator of the stiffness), is on the order of 105, Figure 15(a). The buoyancy adds another level of complexity, by

introducing a two-way coupling of the momentum and energy, through the Boussinesq source terms. The condition

number for the thermally-driven flow is on the order of κ = 106, Figure 15(b). The phase change model introduces

additional tight coupling through the variable-coefficient parabolic operator23, due to the viscosity-based material

strength model. Thus, the computed eigenvalue distribution is highly dispersed, Figure 15(c), with the condition

number on the of order of a billion. Our past experience with using explicit hydro schemes [26] for this configuration

exposed severe stability issues. In [41], we used a SIMPLE-based Picard-iteration non-linear solver, for similar

phase transition problems in nuclear reactor severe accident applications. It took hundreds of Picard iterations to get

marginally converged solution, with a Darcy-law-based phase change model [57]. In contrast, with our Newton-based

approach, we are reliably getting convergence to a rather tight tolerance, in just a few (3 to 5) non-linear iterations.

5.4. Melt pool dynamics

In our final numerical example, we demonstrate the method’s performance for melt pool convection with a

solid crust formation under stable and unstable stratification. The computational domain is defined by Figure 5

(α = β = 20
◦

), with two blocks added at the left and right, to enable a smooth boundary condition transition between

22Computed using the SLEPc package [23].
23Note, the diffusivity coefficient is varied by three orders of magnitude, over 2-3 element-thick “mushy” zone.
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Figure 17: Melt pool dynamics with stable stratification. Temperature field (left) and velocity magnitude/streamline fields (right).
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Figure 18: Melt pool dynamics with unstable stratification. Temperature field (left) and velocity magnitude/streamline fields (right).

34



the heated and the cooled walls. In the first configuration, the top wall is heated (the temperature is set to T̂
TOP
= 2).

The horizontal sections of the top wall, as well as the bottom wall are kept adiabatic. The left and right walls are

cooled, by applying the wall temperature loading as shown in Figure 16. To get crust evolution dynamics with so-

lidification and re-melting, the side-wall temperatures were oscillatory, for a period of the dimensionless time from

10 to 58. The second configuration was the same, but with the reversed direction of the gravity vector. This makes

an interesting case of the unstable stratification. The initial conditions were motionless (molten) fluid with a constant

temperature T̂
init
= 2. The scaling parameters for these tests are: Ra

init
= 106, Pr = 0.1 and S te = 6, M

max
= 0.005. All

simulations are done using the 2nd-order BDF2 time discretization scheme, running with time steps ∆t = 1
32

, on the

128×64 mesh, and using the 4th-order rDG
P

2
P

3
scheme. This corresponds to CFL

mat
=1.6, CFL

aco
=316, Fo

µ
=100 and

Fo
κ
=1.

Computational results for the first case of the heating-from-the-top (stable stratification) are shown in Figure 17.

The flow dynamics starts with a formation of the natural convection, followed by the solidifying and re-melting solid

crust at the side walls of the molten pool, and, finally, freezing of the most part of the domain, due to establishment of

the stable stratification, damping the natural convection and inhibiting the effective heat transfer.

In the second configuration of the heating-from-the-bottom, the stratification is unstable, Figure 18. This promotes

an effective mixing, inhibiting a formation of the solid crust at the bottom of the molten pool. Notably, because of the

higher heat transfer, the boundary layers are thin, leading to the relatively thin solid crusts at the sides, and very thin

“mushy” regions, between the solidus and liquidus.

6. Concluding Remarks

In this study, we introduced a new reconstructed Discontinuous Galerkin method based on orthogonal basis/test

functions and least-squares reconstruction. The method is generally a subclass of the methods of Mean Weighted

Residuals (MWR), in which we solve for degrees of freedom in a piecewise-polynomial primitive-variable solution

representation, minimizing conservation-variable residuals, satisfying the underlying governing equations. There are

two main technical contributions of the work - a) the in-cell and inter-cell reconstruction, using the tensor-product

Legendre polynomials as basis functions, combined with inverse-Jacobian-weighted test functions, ensuring orthog-

onality of the mass matrix and better solvability of the fully-implicit solver; and b) the ability to solve for primitive

variables, chosen on the basis of better conditioning/solvability of the underlying governing equations, while en-

forcing conservation laws. These features enable a robust combination of the rDG with the Newton-Krylov based

fully-implicit solution procedure.

We have demonstrated that the newly developed method is capable of producing highly accurate solutions of

difficult multiphysics problems on highly distorted/stretched unstructured grids. The scope of complexity involves

multiple-time-scale problems, with a wide spread in scales, including very fast (stiff) modes. In particular, we have

shown all-speed flow capabilities, when fully-compressible simulations are performed for extremely small Mach

numbers < 10−3, without explicit filtering of acoustic modes on the problem formulation (governing equations) level.

Also, we have demonstrated an ability to incorporate stiffmaterial strength models within the framework of the multi-

material systems with fluid-solid phase change (melting/solidification).

Our future effort will concentrate on three areas. First, on improvement of preconditioning. In the present study,

we evaluate approximate (lagged) Jacobian matrices, and utilize LU factorizations, as preconditioning techniques for

the GMRES based linear steps in the Newton iterations. This is a rather expensive approach, in both the memory

requirements (for the matrix storage), and the CPU time (for the LU factorizations involved). Instead, we are devel-

oping and implementing a preconditioning strategy which involves iterative procedures, based on equation-splitting

combined with p-multigrid. Our preliminary experimentation indicates that this is a promising strategy to achieve a

scalable performance. Second, we need to extend our current modeling approach to work with multi-material inter-

faces. Our current plan in this direction is to involve a combination of the level set and volume tracking algorithms to

represent interfaces between (partially molten) powder material and ambient gas. Third, we will explore the proposed
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Figure 19: An example of the viscosity factor, as a function of temperature. T̂
L
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methodology for phase change with boiling/condensation, as needed in the selective laser melting (SLM) of our inter-

est here, and potentially impactful in many other applications, such as cavitating flows [16] and numerous challenging

nuclear reactor safety problems [43, 61].
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A. 7-parameter equation of state

The equation of state is defined as

P (ρ, u) = A
0
+A

1
η +A

2
η2 +A

3
η3 +

(

B
0
+ B

1
η + B

2
η2

)

u (59)

where

η (ρ) =
ρ

ρ
0

− 1 (60)

andA
0,1,2,3

, B
0,1,2

and ρ
0

are given constants.

Setting A
j
= 0, B

2
= 0 and B

0
= B

1
= ρ

0
(γ − 1), we will get the γ-law gas. Another useful limiting case is

A
2,3
= B

j
= 0, which is denoted as the 2-parameter EOS. In this case, the speed of sound is constant, and defined as

c =

√
A

1

ρ
0

.
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B. Solid-state viscosity model

In the present study, the viscosity factor in eq.(11) is defined as

f
µ

(T ) = 10
ϕ(T )

(61)

where

ϕ (T ) = −
(

a
0
− 4a

1

)

ψ (T ) + 2
(

a
0
− 2a

1

)

ψ (T )
2

ψ (T ) = 1
2

(

1 + cos
(

π
(

b
0
+ b

1
T̂ + b

2
T̂ 2

)))
(62)

a
0
= log10

(

α f
S

)

, a
1
= log10

(

f
S

)

b
0
=

T̂
⋆ (

T̂
L

(

T̂
⋆
−T̂

L

)

−2T̂
S

(

T̂
⋆
−T̂

S

))

d

b
1
=

T̂
⋆2

+T̂
2

L
−2T̂

2

S

d

b
2
= −

T̂
⋆
+T̂

L
−2T̂

S

d

d = 2
(

T̂
⋆

− T̂
L

) (

T̂
⋆

− T̂
S

) (

T̂
L
− T̂

S

)

T̂
⋆

= T̂
L
− ω

(

T̂
L
− T̂

S

)

(63)

and T̂ = T

T̄
is the dimensionless temperature. There are three input parameters for this model, i.e. – f

S
(viscosity

factor at solidus), α (defining the limiting “solid-state” viscosity as µ
⋆

S
= α f

S
µ

L
) and ω (defining the thickness of the

“creeping solid” state). An example of the f
µ

(T ) is shown in Figure 19.

C. Mapping DoFs

C.1. Change of basis functions, Legendre-to-Taylor

For evaluation of diffusion operators and for reconstruction/recovery, it is necessary to have a mapping from

the orthogonal basis functions eq.(16) to the Taylor basis functions eq.(15). This mapping is provided by matrices

denoted as L
(Pn)

2T
. Defining the vector of the orthogonal Legendre-based DoFs in an element as U

(k)
, and the vector of

the Taylor-based DoFs as V
(k)

, the third-order mapping L
(P2)

2T
in 2D is




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0
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0
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0
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2

y
0


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︸                                                                 ︷︷                                                                 ︸

L
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(64)

where
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(65)
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and the coefficients of the inverse-Jacobian matrix, and their derivatives are evaluated at element’s centers. This map-

ping is developed on the requirement that both the Legendre-based and the Taylor-based solution representations in

an element give identical point-wise solutions and all derivatives (up to the order of interest), at the geometrical center

of the element.

Similarly, the fourth-order mapping is defined as

L
(P3)

2T


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where we only show a non-zero pattern, for brevity.

C.2. Change of formulation, W-to-U

For evaluation of time derivatives when solving for primitive variables, we need to map DoFs defined for W

to those of U. In the present work, we use a Gauss quadrature based approach, which is defined by the following

relationship:

U
(n)
≡ A

(n)

∫∫

Ωe

(
K−1∑

k=0

W
(k)
B

(k)
(ξ, η)

)

W
(n)

dΩ

= A
(n)

Ng∑

g=0

(

ω
g
B

(n)

(

ξ
g
, η

g

) K−1∑

k=0

(

W
(k)
B

(k)

(

ξ
g
, η

g

))
) (68)

whereω
g
, and

(

ξ
g
, η

g

)

are the weight and the reference-space coordinates of the Gauss integration points, respectively,

while the W
(k)

are the (solved-for) DoFs in the primitive-variable W-formulation.
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